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As an inclined rod sediments in an unbounded viscous fluid it will drift horizontally 
but will not rotate. Whkn it approaches a vertical wall, the rod rotates and so turns 
away from the wall. Illustrative experiments and a slender-body theory of this pheno- 
menon are presented. In an incidental study the friction coefficients for an isolated rod 
are found by numerical solution of the slender-body integral equation. These friction 
coefficients are compared with the asymptotic results of Batchelor (1970) and the 
numerical results of Youngren & Acrivos (1975), who did not make a slender-body 
approximation. 

1. Introduction 
Sedimentation of a sphere through a Newtonian liquid in the absence of inertia is 

straightforward. In an unbounded fluid the sphere does not rotate and falls in the 
direction of gravity. The proximity of a vertical wall induces rotation about a horizon- 
tal axis parallel to the surface but causes no drift. This well-known behaviour follows 
from the linearity of the Stokes equations and the symmetry of the geometry. 

With rodlike particles a more interesting behaviour can be observed. Taylor( 1969) 
and others have demonstrated that the sedimentation rate of a rod depends on its 
orientation: a slender cylinder falls approximately twice as fast when it is vertical as it 
does when it is horizontal. Consequently a rod will drift laterally a t  intermediate 
orientations. The absence of rotation, however, again follows from reversibility. 

In a tall container the horizontal drift must eventually bring the particle close to a 
side boundary. Since Batchelor ( 1970) has demonstrated that the far-field disturbance 
generated by a rod resembles that of the sphere which encloses it, one might expect 
interaction with a side to induce rotation. Indeed, this can be observed and is predicted 
by the far-field analysis of Caswell(l970). Unlike the case of a sphere, however, both 
the magnitude and the sign of the angular velocity depend on the orientation. Accord- 
ing to Caswell's analysis, approach normal to the wall at an inclination of less than 45' 
to the vertical initially induces a negative angular velocity, i.e. the leading end 
rotates away from the wall, while at  larger angles a positive rotation results. Thus two 
modes of interaction are suggested (figure 1). A rod approaching at  a small angle turns 
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FIGURE 1. Glancing and reversing turns of a sedimenting rod, as predicted by the asymptotic 
theory of $2, with K = &-. The glancing turn starts from 0 = 20' when X = 3 and the reversing 
turn starts from 0 = 70' when X = 3. The rods are shown at  time intervals of 4npl2/FO. 

smoothly through the vertical and drifts away with the same end leading, a 'glancing ' 
turn. At orientations closer to the horizontal the wall primarily retards the near end of 
the rod, causing it to pivot and then move away with the opposite end leading, a 
'reversing ' turn. While the far-field analysis indicates the orientation of approach 
separating the two modes to be 45", we shall see that terms which have been neglected 
decrease the critical orientation. 

In  a tall container there is the possibilityof a small rod repeatedly being turned away 
from the sides before it reaches the bottom. In the case of two vertical sides, symmetry 
requires the rod to oscillate periodically and not to approach a terminal position or 
orientation. This effect would lead to a fairly uniform distribution of the rods in the 
interior of the container, so long as interactions between the rods can be neglected. 

The following ,sections contain an analysis of the interaction between a slender 
circular cylinder and a single plane wall. We first formulate the problem in terms of 
slender-body theory and present an asymptotic solution for the instantaneous motion. 
Then an independent, and more accurate, numerical solution of the integral equations 
is discussed and the trajectories calculated by the two different approaches are com- 
pared. As an aside, numerical results for the friction coefficients of a slender particle in 
an infinite fluid are compared with the third-order asymptotic solutions of Batchelor 
(1970) and the non-slender-body results of Youngren & Acrivos (1975). Finally we 
describe some simple experiments which verify the main theoretical predictions. 

2. Theory 
Slender-body analysis 

Within the past decade slender-body theory, originally proposed for potential flows, 
has been extensively developed to describe the translation and rotation of rodlike 
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FIGURE 2. The co-ordinate system. 

particles a t  low (zero) Reynolds number. The basic theory has been extended to 
include the effects of (i) blunt ends (Tuck 1964), (ii) centre-line curvature (Cox 1970), 
(iii) non-Newtonian suspending fluids (Leal 1975) and (iv) interactions with walls 
(Blake 1971). Here we use the last development to analyse the motion of a straight 
slender circular cylinder of radius R, and length 21 which is sedimenting through a 
viscous fluid in the vicinity of a plane wall. We assume that the plane of motion of the 
particle is perpendicular to the wall. Furthermore, end effects are ignored and atten- 
tion is restricted to situations in which the cylinder is separated from the wall by a 
distance much greater than R,. These simplifications retain most of the interesting 
physics governing the particle trajectory while making the analysis tractable. 

The essence of slender-body theory lies in an approximate representation of the 
body’s effect on the fluid by a distribution of singularities (i.e. point forces, force 
doublets and source doublets) along its axis. The nature and strength of these singu- 
larities are adjusted so that the disturbance flow cancels the applied flow a t  the 
particle surface, i.e. there is no slip. If a plane wall is present, an additional set of 
singularities must be distributed along the axis of the body’s image in order to achieve 
no slip on the wall. The image system for a point force near a plane wall was obtained 
by Blake (1971). He found i t  to be a point force of equal magnitude but opposite sign 
plus a force doublet and a source doublet. These results suffice for our problem. 

The co-ordinate system used is illustrated in figure 2, which also serves to define 
10-2 
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certain other variables that appear in the theory. The midpoint of the particle is 
denoted by ( X ,  0) and its angle of inclination to the vertical by 0. The variables s and 
s‘ both specify the position of points on the particle axis relative to its midpoint. The 
distance between s‘ and a point on the particle surface a.t s is denoted by r ,  while the 
distance between s and the image of s‘ is denoted by r*. For convenience, we scale all 
position and distance variables with respect to 1. With these conventions, the two 
significant disturbance velocities at  the cylinder surface are 

1 I (s - s’)~ sin2 0 + 4 ~ 2  C O S ~  0 I r2,(x2+ x’2) + 6xx‘(x + x’)2 --- 
r3 r* .“* 

] )ds ‘ ,  

( l b )  

1 (8 - s ’ )2  C O S ~  0 + $ K ~  sin2 0 1 (S - sr)2(r2, - 6 x 4  C O S ~  0 + 2rjxx‘ --- 
+F,(s‘) [;+ r3 r* r: 

where K = R,/l is the aspect ratio and 

x = X+ssinB, x’ = X+s’sinB, 

r2 = (s - s’)2 + ~ 2 ,  r$ = (s - s’)2+ 4x2 + 4 sin B(sX + s’x). 
The fluid motion normal to the plane of figure 2 is O(K)  and therefore negligible. The 
appropriate image singularities have been included in ( I ) ,  so that the boundary con- 
dition on the wall is automatically satisfied. 

The integral equations (1)  are solved by choosing the force distributions Fx(s) and 
q ( s )  in such a way that the disturbance velocities are of the form of a rigid-body 
motion : 

u,(s) = Ux+ CllscosO, u,(s) = U,- SZZssinB. ( 2 )  

The translational velocity of the rod (U,, U,) and its angular velocity SZ are determined 
by the conditions of constant force and zero couple on the particle: 

and [FJs)  COB 8 - F,(s) sin 81 s ds = 0. 

In the following section, numerical solutions will be presented for the integral equa- 
tions ( 1 )  subject to the side conditions (2) and (3); here we develop an asymptotic 
solution for the limit e = 111. ( 2 / ~ )  < 1. 

The asymptotic analysis capitalizes on the quasi-local nature of the slender-body 
theory; i.e. the fact that the induced velocity at  the cylinder’s surface primarily 
depends on the force density a t  the nearest axial point, as long as the force density 
varies on a length scale of 1 and not K .  From ( 1 )  we have (Batchelor 1970) 

(4) 
u,(s) = (4npe)-l[( 1 + sin2 8)  F,(s) +sin 0 cos SF2(s)] + EV,, 

~ ~ ( $ 1  = (4npe)-l[sin e cos e F,(s) + ( I  + C O S ~  e)  c (~ ) ]+  E V ~ ,  
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where the correction terms v, and v, vary with s and are not local. Even when the rod 
is very near t o  the wall, i.e. 6' - 0, X < 1 and X / K  % 1, de Mestre & Russel (1975) 
showed that the local nature is preserved with 6 = l/ln ( 2 1 ~ )  in (4) being replaced by 
i/ln (ZXIK) ,  but for simplicity we suppress this extension by assuming that K is very 
much smaller than X. I n  order to make the disturbance velocities in (4) vary linearly 
with s as required by ( Z ) ,  we must clearly choose, at lowest order, force distributions 
which vary linearly with s. The only such force distribution consistent with ( 3 )  is 

F, = O(sF0/Z), F, = -+Fo/l, 
which results in 

1 + sin2 6' F,, Q = O ( $ ) .  
sin 6' cos 6' 

Fo' ' 8npk u, - - 8npk 
Substituting the first approximation to the force distribution ( 5 )  into the integral 
equation (1) yields the correction terms v, and v, in (4). The force distributions are then 
adjusted locally to cancel these corrections. The constraints (3), however, do not per- 
mit these adjustments to the force distributions to contain a part which varies linearly 
with s. The parts of v, and v, which vary linearly with s are balanced by adjustments to 
the translational and rotational velocities U,, U, and R. Thus we find 

sin 6' cos 6' u = -  
X 8npk 

and (7 c) 

After much algebra, evaluating vz and v, in (4) and substituting into ( 7 ) ,  we find the 
analytic expression for the angular velocity: 

.="/I 21 - 1  [v, cos 6' - v, sin 81 s ds. 

- 2S2( I + 482) 
(X2 + c2): - s 

51 = 2%- 32n,u12 jZSI0 s2 + I, &(I+ 4S2) + 25(2  + 3s2-  4#4) 
C2 

where 
1+x2 L --, A 4- 

' 2 - A -  S = sin 8, C = cos 0, I,, = s1 s'LIn (RJR-) ds, L, = In 
-1 A+ - A- 

R+ = is2 + 2 [ 2 X $ F (  1 - ZS')] s + I + 4X2 & LSS).i 1 + 2 X S -  S( 1 - Z P ) ,  

A* = [(P+ C2)8+ XS * c;lZJ/(XFS). 

Corresponding equations for the translational velocity components can also be 
obtained. However, the resultant expressions have not been integrated analytically 
because of t'heir complexity. Instead, for trajectory calculations, we have used the 
velocities (6 a, b )  without wall effects. As illustrated by the numerical computations 
which follow, the dominant error in these approximations lies in the O(e) and higher 
corrections to the resistance coefficient rather than the O(e/ln X) wall effect. We note 
that the shape of the slender body does not enter the asymptotic theory a t  the level of 
approximation in (8). Thus, although we have worked with a circular cylinder for 



278 W .  B. Russel, E.  J .  Hinch, L. G. Leal und G. Tiejj’enbruck: 

simplicity, ( 8 )  is applicable to any slender body. In  view of its algebraic complexity, 
we have checked (8) against the theory of de Mestre & Russel (1975) for 0 = 0 and 
&r and against numerical evaluations of (6a) .  Furthermore, we have confirmed that 
Q + 0 as X + 00 as expected. 

Numerical solution of the integral equation 

Slender bodies can be easily constructed with K sufficiently small for little error to be 
expected in the predictions of the integral equations resulting from (1) .  The asymptotic 
solution (6 a, b )  and (8) of the integral equations, however, has a more limited applica- 
tion because particles rarely have e = l/ln ( 2 / ~ )  small. For example, in the experiment 
described in $ 3  the particles have K = & and e = 0.209. A numerical solution of the 
integral equations was therefore sought to make reasonable predictions for these 
particles. 

The integral equations from the slender-body theory were discretized by dividing 
the rod into N segments of equal length. Within each segment the Stokeslet force 
distribution was assumed to have a constant value, introducing 2N unknowns, and the 
integral was evaluated at the centre of each segment, providing 2N equations. Care is 
needed in integrating the kernel function. While the part of the kernel arising from the 
images in the wall is adequately treated by the trapezoidal rule using the two end 
points of the segment, such a treatment of the remaining, non-image part of the 
kernel would result in large, O(l/ln N )  truncation errors. This part was integrated 
analytically and the resulting analytic expressions rearranged to avoid the numerical 
subtraction of nearly equal large numbers. The discrete form of the integral equation 
was thus 2N linear equations for the velocity distribution in terms of the 2N values of 
the Stokeslet distribution. While no elements of the coupling matrix vanish, the 
diagonal is fairly strong, reflecting the singular nature of the integral equation at  small 
K .  A Gauss-Seidel iterative procedure was therefore adopted to solve for the Stokeslet 
distribution. The iteration was started from the lowest-order asymptotic result and 
usually converged to an r.m.8. error of in less than seven iterations. When time 
stepping the configuration, the iteration was started with the converged result from 
the previous time step and often required only a single iteration. To avoid systemat,ic 
errors, the iterative sweep was started from alternate ends at  each time step. 

To determine the motion of the rod near the wall, three integral equations were 
solved for each configuration, corresponding to the three velocity distributions for 
translation of the rod at  unit velocity parallel and perpendicular to the wall and for 
rotation a t  unit angular velocity. For each velocity distribution, the net force and 
couple acting on the rod were evaluated from the Stokeslet distributions and the 
correct linear combination chosen so that the couple vanished and the net force was 
unity parallel to the wall. This translation and rotation were finally used in a fourth- 
order Runge-Kutta time-stepping procedure to calculate the next configuration. A 
step size for which the rod fell through its own length in two time increments generally 
produced an accuracy of better than 10-3. Smaller time steps are necessary very near 
the wall, so automatic interval halving was used. 

To assess the accuracy of the numerical solution of the integral equation, several 
studies were performed without the images in the wall. The motion of a rod in an 
unbounded fluid has received considerable attention and Batchelor’s (1970) third- 
order asymptotic theory is available for comparison. First the effect of increasing N on 
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the numerical representation of the Stokeslet distribution was studied for perpendicu- 
lar translation and K = &. The general shape of the distribution does not change for 
N = 3 , 7 ,  15 and 31 (at which the centre of the end segment is within one radius of the 
end). Except for the end segments, where the distribution sharply rose by GOYo,  the 
predicted values of the force distribution differed by less than 8 Yo. Varying the length 
of the numerical segment or subtracting a special analytic end correction might have 
improved the representation. 

The main side study evaluated the various friction coefficients for a free circular 
cylinder as predicted by the slender-body integral equation. The net forces Sl and T2 
on a rod translating parallel and perpendicular to itself, respectively, were calculated 
together with the couple LY2 on a rod rotating about an axis perpendicular to itself and 
the stresslet YI1 when the rod is placed in a pure axially symmetric straining motion. 
At fixed K these friction coefficients varied little with N ,  and the error scaled on In NIN,  
as expected from the poor representation of the end regions. For the rotation, the most 
sensitive of the three coefficients involved in the wall inteSactions, the result a t  
K = +a for N = 10 had a 7 yo error and that for N = 28 a 34 yo error. The results €or the 
friction coefficients extrapolated to N = co are shown in figure 3, normalized by the 
first-order asymptotic prediction. 

Also shown in figure 3 are Batchelor's (1970) third-order asymptotic results [his 
equations (8.1 1)-(8.14)]. At K = g5 the first-order asymptotic results are poor, with the 
stresslet out by a factor of two. The third-order theory narrows this gap to 13 %. 

In  the case of Sl and 2Z2 we have in addition been able to compare our results with 
those of Youngren & Acrivos (1975). They solved numerically the integral equation for 
Stokeslet singularities distributed on the surface of the rod including the ends, and 
thereby made no slender-body approximation. Our slender-body numerical results for 
Fl tend quickly to the full numerical results, with an error of 0 . 4 ~  coming from the 
ends. The agreement for LT2 is not so good, with a 5 %  difference between the two 
results at  K = (Note that in their table 4 Youngren & Acrivos give the couples 
multiplied by a factor of 8.) It is not clear whether the discrepancy is due to the slender- 
body approximation or whether the numerical results are inaccurate at  large aspect 
ratio. 

Results 

The equations of motion for a rod moving near a wall have been integrated numerically 
as outlined in the previous subsection. Figure 1 shows the two possible ways in which 
the rod can turn. Those rods which start far from the wall a t  an initial inclination to the 
vertical greater than 67" turn such that they are horizontal at  closest approach, while 
those starting with an initial inclination less than 27" are vertical a t  their nearest point. 
Each of the two turns is symmetric under time reversals, so that after the turn the 
particles tend to the initial inclination to the horizontal but with the opposite sign. 
Between 27" and 67" the slender-body theory predicts a collision with the wall, al- 
though the analysis breaks down for separations less than a diameter. The neglected 
end effects then become very large and stop the rod from touching the wall. Simple 
lubrication considerations presented in the appendix suggest that these effects will 
immobilize the end, causing the rod to pivot through a horizontal position, although 
this behaviour is not entirely confirmed by the experiments. A detailed analysis of 
such collisions is complicated by their sensitivity to the precise shape of the end of the 
rod, with a possibility that the symmetry of the turn would be lost for imperfect ends. 
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FIGURE 3. The friction coefficients for slender circular cylinders for perpendicular (,F2) and 
parallel (FJ translation, for rotation about an axis perpendicular to the cylinder (.%J and for 
pure straining motion in the direction of the cylinder (Yl1). Our numerical results ( N )  are com- 
pared with Batchelor's third-order asyaptotic results ( A )  and the full numerical results of 
Youngren & Acrivos (crosses). 

In figure 1 the vertical length scale is seen to be large: the rod falls much faster 
than it  moves sideways or rotates. This is particularly evident for the near-vertical 
glancing turns. An alternative presentation of the results is given in figure 4, where the 
trajectory is plotted as the inclination from the vertical 0 us. the distance X from the 
wall to the centre of the rod. Markers at  equal time separations (8?~,ul~/F~) are placed 
along the trajectories. The shaded region denotes the forbidden configurations in 
which some part of the rod lies within the wall. The trajectories terminating in this 
region indicate collisions with the wall at finite orientations, even with very fine 
numerical resolution. Most trajectories show little rotation one particle length from 
the wall. Rods approaching at  45", for which the angular velocity vanishes in the far- 
field analysis of Caswell(1970), rotate through less than lo before approaching within 
one quarter of their length from the wall and rotate through only 5" before colliding 
with the wall. The exceptions are particles which turn at a large distance from the wall. 
These start near the horizontal or vertical and turn slowly, therefore falling through a, 
large vertical distance before completing the turn. 

The full curves in figure 4 are based on the numerical solution of the integral equa- 
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FIGURE 4. The variation of the distance from the wall and the orientation of the rods as they 
turn. Numerical solution of the integral equation yields the solid curves, which are marked a t  
time intervals of 87rpZ2/F0. The dashed curves labelled A are trajectories for 20" and 70" obtained 
from (6a ,  b)  and (8). The dashed curves labelled M use the modified friction coefficients of 

0, 8, = 17" (run 1); ., 8, = 17" (run 2). 
figure 3. Experimental data points: A, 8, = 66"; 0 ,  ern = 54"; 0, 8 = 47". 9 A t r n  8 = 27'; 

tions. The results from the first-order asymptotic solution of the integral equations 
are also plotted as dashed curves labelled A for the 20" and 70" trajectories. This 
asymptotic theory underestimates the drag on the rods, allowing them to come much 
closer to the wall; indeed, the band of initial angles leading to collisions widens to 
23"-69". Because most of the error in the asymptotic theory comes from the poor 
friction coefficients for translation, a modified theory was developed in which the 
numerically evaluated friction coefficients replace the asymptotic ones but the angular 
velocity remains that of the first-order asymptotic theory. The resulting trajectories 
for this modified theory, plotted as dashed curves labelled M ,  lie very near the full nu- 
merical curves and demand somewhat less computer time. The success of the modified 
theory indicates that the wall has little effect on the translational velocity of the rods. 
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FIGURE 5. The particle release mechanism. Not drawn to scale. 

3. Experiment 
Apparatus and procedure 

The experiments were conducted in a Plexiglas tank with a 2 ft by 2 ft cross-section 
and a height of 5 ft. The tank was placed on a stand which was adjusted so that the 
walls were vertical. 

The particles were made from aluminium screen wires. These wires were placed 
between two smooth flat stainless-steel plates and then rolled to  a nominal diameter of 
0.0254 cm. The aspect ratio l / K  = l/Ro of the particles ranged from 59 to 69. A qualita- 
tive check with a microscope showed the particles to be straight and of constant radius. 
The particles were in addition shiny, which made them well suited for photographic 
study, and light, with a measured density of 2.36 g/cm3. 

The liquid used was a white mineral oil supplied by Standard Oil Co. of California. 
This liquid is colourless and clear, ideally suited for a photographic study. At 22.2 "C, 
the density of the liquid is 0.88 g/cm3 and its viscosity is 170 cP. 

In  order that the experiment can be compared with the theory it is important to 
release the particle in a way which does not cause it to turn out of the plane perpen- 
dicular to the wall, or cause a significant disturbance in the surrounding fluid. The 
release mechanism which we used is shown in figure 5. Its significant feature is the thin 
metal plate with a groove 0.05 cm in diameter in the bottom edge. Just prior to 
startilg the experiment, the groove is wetted with the liquid being used. The slender 
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FIGURE 6. Distance between the particle centre and the wall as a function of time. 0 ,  8, = 54'; 

body is then carefully placed in the groove. When the plate is submerged in the liquid, 
the slender body slowly slides out of the groove. The plate can be adjusted such that 
the particle is released in the proper plane. We found that this system successfully 
launched about 80 yo of the particles. 

The motion of the particles was recorded on 16 mm cine film with a Bolex camera. 
The camera was mounted on a counterweighted platform which could be moved up or 
down at a variable, but controlled speed. The particle was thus tracked during its 
entire fall, and a continuous film obtained of its trajectory. Quantitative measurements 
were made from the film using a microfilm reader. Vertical position was measured from 
image lines on the back of the tank. Horizontal position was determined using a photo- 
graph of a ruler taken prior to the experiments. A typical run lasted 5 min, during 
which thirty frames would be taken at constant intervals. 

Results 

The purpose of the experiments was to verify, a t  least qualitatively, the theory 
described in $2.  Thus measurements were made of the position of the particle centre 
and the particle orientation as functions of time for various initial inclinations ranging 
from 17" to 65". We present data here for the five representative cases 8, = 17" (two 
sets), 27", 47", 54" and 65", which include one 'glancing' turn (17"), two 'reversing' 
turns (54" and 65"), one 'colliding' turn (47"), and one turn just on the border between 
'glancing ' and ' colliding' (27"). Plots showing horizontal and vertical position as a 
function of time for initial inclinations of 17", 27", 47" and 54" are given in figures 6 
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FIGURE 7.  Vertical displacement of the particle centre as a function of time. 0 ,  $, = 54'; 
0, e, = 470; A, e, = 27"; 0, e, = I T .  

and 7. The measured angle of inclination as a function of horizontal position for all five 
initial angles has been superimposed on figure 4, where it may be directly compared 
with the theoretical results. An indication of the degree of reproducibility of the data 
is provided by the two independent sets of data for 8, = 17" in figure 4. We shall discuss 
figures 4, 6 and 7 in detail shortly. 

First, it is useful to  consider the motion of the particle when it is far from the wall. 
All of the experiments were started with the separation between the particle and the 
wall sufficiently large that the sedimentation rate was constant and the particle 
rotation nil. The existence of such a regime suggests strongly that both inertia and end 
effects of the top and bottom of the tank have a negligible influence on the particle 
motion. For, if inertia or end effects were significant, the particle would rotate and 
translate with a velocity which varies with time. The absence of a measureable inertia 
effect is important since the Reynolds numbers based on the observed velocities show 
values as large as 0.1. A further check on the importance of inertia or end effects is 
provided by a comparison between the measured velocities and theoretical values 
corresponding to the drag coefficients of figure 3. The horizontal and vertical velocity 
components are listed in table 1. The two sets of values are in good agreement, thus 
confirming the lack of significant inertia or end effects. A final demonstration, which 
also illustrates a degree of self-consistency in the data, is the fact that the vertical and 
horizontal positions, plotted vs. time in the manner of figures 6 and 7, collapse onto 
universal curves when the particles are far from the wall. 

Turning to the regime of wall interactions, it  is clear from figure 4 that the observa- 
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Experimental Theoretical 
r--------- 7-7 

56 0.206 0.0495 0,209 0.048 
47 0.210 0.051 0.221 0.050 
27 0.265 0.044 0.254 0.041 
17 0.255 0.0275 0.265 0.028 

0, us uz uz uz 

TABLE 1.  Particle velocities (cmis). 

tions and predictions are at  least in qualitative accord. In particular, the 'glanring' 
and 'reversing' modes of interaction are both evident, the former for 8, = 17" and 
the latter for 6, = 54" and 65". In addition, a t  intermediate angles, e.g. 8, = 47') the 
particle appears, with the resolution available, to hit the boundary and then complete 
its rotation.? Even from a quantitative point of view, the two cases 6, = 17" and 
0,  = 27" are in excellent agreement with theory, certainly well within expectations 
given the approximations of the theory and uncertainties in the experimental data. 
The case 8, = 27" appears to be close to the maximum angle for a 'glancing' turn, as 
the particle comes extremely close to touching the wall. 

The three cases of larger initial inclination, 0, = 47", 54" and Go, in which the 
particle undergoes a 'reversing' turn, are in poorer agreement with the theory. In  
particular, the influence of the wall is felt at a much greater distance than that pre- 
dicted. This is especially evident for 6,  = 54' and 65", where the particle inclination is 
already changing when the centre is some 5 half-lengths from the wall. The horizontal 
velocity is less influenced, but it too begins to be affected by the wall a t  nearly 3 half- 
lengths separation distance. We may note that the end of the particle comes very close 
to touching the wall for 0, = 47", as predicted by the slender-body theory, but ap- 
parently it does not make contact. The strongest evidence for no contact is that the 
particle continues to slide vertically down the wall, rather than pivoting about a 
fixed end. 

Several other features of the observed particle motions are worth noting. First, the 
particle trajectories are reversible. We have only shown data corresponding to the 
approach to the boundary. However, complete symmetry was observed between the 
approach and retreat'. This is true even for 6 ,  = 47", where the particle end is very 
close to the wall, thus providing further evidence that the particle and wall do not 
touch. Second, the angle of inclination appears more sensitive to the influence of the 
wall than any of the other variables. In  particular, the plots of figures 6 and 7show close 
agreement with predicted translational velocities in an infinite fluid, right down to one 
half-length separation between the wall and particle. Indeed, except for separations of 
one half-length or smaller, deviations from the infinite-fluid result are well within 
normal experimental error, and probably of little significance. 

Clearly, most features of the motion of rod-like particles near a plane wall are 
correctly predicted by the slender-body analysis of $2.  Some points of disagreement, 
for example the lack of contact between particle and wall for 8, = 47", may result from 
entl corrections neglected in the analysis. Other points of disagreement, however, are 

t We shall discuss this last point in more detail later. 
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not so easily explained and thus require further study. Most important are the devia- 
tions between theory and experiment which are found at  large distances when the 
initial inclination is large (i.e. 8, = 54O and 65"). At present, we see no obvious explana- 
tion for these differences either in the theory or in experiments. 

L. G. Leal and G. Tieffenbruck wish to thank the National Science Foundation for 
its support of their participation in this work, through grant ENG 74-17590. 

Appendix. A lubrication theory for a 'colliding' turn 
The way in which lubrication farces acting on the end of the rod manage to stop it 

colliding with the wall makes an interesting study for the method of matched asympto- 
tic expansions. Here we summarize the basic results. Time is non-dimensionalized by 
4r,ul/Fo and lengths remains non-dimensionalized by the half-length of the rod. For 
simplicity we assume that the rod has a spherical end of radius KR with R of order 
unity. Except for lubrication forces acting on the end, no interaction with the wall is 
included as appropriate a t  the lowest order of slender-body theory. 

The standard expressions for the lubrication forces become applicable when the 
separation d between the rod and the wall is somewhat smaller than K ,  i.e. the thick- 
ness of the rod. These lubrication forces do not affect the motion, however, until 
d = O(~21n K ) ,  because the friction coefficient for the whole rod is 1/Kln K larger than 
that for the small end. Initially only the normal lubrication force acts, and it dramati- 
cally slows down the horizontal motion towards the wall. The normal force also 
causes a negative angular velocity. 

The tangential lubrication force becomes important after a short time O(K In K) ,  when 

d = O ( K ~  exp ( 5  cos2 8/R K In K ) ) .  

This occurs in spite of the fact that the friction coefficient associated with the tangential 
lubrication force is O((d/K) In ( d / K ) )  smaller than that associated with the normal force, 
because the normal velocity drops more dramatically than the tangential velocity. The 
action of the tangential lubrication force is to decrease the tangential velocity of the 
end of the rod, and to make the rod rotate with a positive angular velocity. 

There then follows a long phase in which the rod rotates virtually pivoting on a fixed 
end. The pivoting turn lasts for a period of time 

3 4 1nK -I-], (tan?). 

During the turn the end of the rod slips vertically a distance O(K) while the minimum 
separation is predicted to be 

d = K ~ R ~  exp (isin i9,/K2 In K R ~ ) .  
This minimum separation is extremely small; indeed, so small that physical contact 
must be expected in practice, e.g. in the experiments of 9 3 a separation smaller than 
10-lOo m is predicted. Physical contact, or any other breakdown of the lubrication 
theory, would of course destroy the symmetry of the turn. The reason for the smallness 
of the minimum separation is not difficult to see: the normal lubrication force 

$K2R2d/d 

remains O( 1) during the turn, which lasts for l/ln K ,  thus In (d/d,) = O( I / K ~  In K ) .  
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